Перевод: со всех языков на русский

с русского на все языки

объем задачи

  • 1 объем задачи

    Большой англо-русский и русско-английский словарь > объем задачи

  • 2 scope of problem

    Англо-русский словарь по исследованиям и ноу-хау > scope of problem

  • 3 scope of problem

    Большой англо-русский и русско-английский словарь > scope of problem

  • 4 linear programming

    1. линейное программирование

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > linear programming

  • 5 DP

    1. процессор для обработки данных
    2. проект предложения
    3. приоритет при отбрасывании
    4. предварительное сообщение
    5. порт пункта назначения
    6. перепад давлений
    7. обработка данных
    8. импульс набора номера
    9. дистанционная защита
    10. динамическое программирование
    11. выявленный загрязнитель воздуха, не имеющий установленных норм по предельно-допустимой концентрации

     

    выявленный загрязнитель воздуха, не имеющий установленных норм по предельно-допустимой концентрации

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    динамическое программирование

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    динамическое программирование
    Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений. Процессы принятия решений, которые строятся по такому принципу, называются многошаговыми процессами. Математически оптимизационная задача строится в Д. п. с помощью таких соотношений, которые последовательно связаны между собой: например, полученный результат для одного года вводится в уравнение для следующего (или, наоборот, для предыдущего), и т.д. Таким образом, можно получить на вычислительной машине результаты решения задачи для любого избранного момента времени и «следовать» дальше. Д.п. применяется не обязательно для задач, связанных с течением времени. Многошаговым может быть и процесс решения вполне «статической» задачи. Таковы, например, некоторые задачи распределения ресурсов. Общим для задач Д.п. является то, что переменные в модели рассматриваются не вместе, а последовательно, одна за другой. Иными словами, строится такая вычислительная схема, когда вместо одной задачи со многими переменными строится много задач с малым числом (обычно даже одной) переменных в каждой. Это значительно сокращает объем вычислений. Однако такое преимущество достигается лишь при двух условиях: когда критерий оптимальности аддитивен, т.е. общее оптимальное решение является суммой оптимальных решений каждого шага, и когда будущие результаты не зависят от предыстории того состояния системы, при котором принимается решение. Все это вытекает из принципа оптимальности Беллмана (см. Беллмана принцип оптимальности), лежащего в основе теории Д.п. Из него же вытекает основной прием — нахождение правил доминирования, на основе которых на каждом шаге производится сравнение вариантов будущего развития и заблаговременное отсеивание заведомо бесперспективных вариантов. Когда эти правила обращаются в формулы, однозначно определяющие элементы последовательности один за другим, их называют разрешающими правилами. Процесс решения при этом складывается из двух этапов. На первом он ведется «с конца»: для каждого из различных предположений о том, чем кончился предпоследний шаг, находится условное оптимальное управление на последнем шаге, т.е. управление, которое надо применить, если предпоследний шаг закончился определенным образом. Такая процедура проводится до самого начала, а затем — второй раз — выполняется от начала к концу, в результате чего находятся уже не условные, а действительно оптимальные шаговые управления на всех шагах операции (см. пример в статье Дерево решений). Несмотря на выигрыш в сокращении вычислений при использовании подобных методов по сравнению с простым перебором возможных вариантов, их объем остается очень большим. Поэтому размерность практических задач Д.п. всегда незначительна, что ограничивает его применение. Можно выделить два наиболее общих класса задач, к которым в принципе мог бы быть применим этот метод, если бы не «проклятие размерности». (На самом деле на таких задачах, взятых в крайне упрощенном виде, пока удается лишь демонстрировать общие основы метода и анализировать экономико-математические модели). Первый — задачи планирования деятельности экономического объекта (предприятия, отрасли и т.п.) с учетом изменения потребности в производимой продукции во времени. Второй класс задач — оптимальное распределение ресурсов между различными направлениями во времени. Сюда можно отнести, в частности, такую интересную задачу: как распределить урожай зерна каждого года на питание и на семена, чтобы в сумме за ряд лет получить наибольшее количество хлеба?
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    дистанционная защита
    -

    [В.А.Семенов Англо-русский словарь по релейной защите]

    дистанционная защита
    Защита с относительной селективностью, срабатывание и селективность которой зависят от измерения в месте ее установки электрических величин, по которым путем сравнения с уставками зон оценивается эквивалентная удаленность повреждения
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    дистанционная защита
    Защита, чье действие и селективность основаны на локальном измерении электрических величин, по которым рассчитываются эквивалентные расстояния до места повреждения в пределах установленных зон.
    [ http://docs.cntd.ru/document/1200069370]

    дистанционная защита
    Защита, принцип действия и селективность которой основаны на измерении в месте установки защиты электрических величин, характеризующих повреждение, и сравнении их с уставками зон.
    [Циглер Г. Цифровая дистанционная защита: принципы и применение. М.: Энергоиздат. 2005]

    EN

    distance protection
    distance relay (US)

    a non-unit protection whose operation and selectivity depend on local measurement of electrical quantities from which the equivalent distance to the fault is evaluated by comparing with zone settings
    [IEV ref 448-14-01]

    FR

    protection de distance
    protection à sélectivité relative de section dont le fonctionnement et la sélectivité dépendent de la mesure locale de grandeurs électriques à partir desquelles la distance équivalente du défaut est évaluée par comparaison avec des réglages de zones
    [IEV ref 448-14-01]

    Дистанционные защиты применяются в сетях сложной конфигурации, где по соображениям быстродействия и чувствительности не могут использоваться более простые максимальные токовые и токовые направленные защиты.
    Дистанционной защитой определяется сопротивление (или расстояние - дистанция) до места КЗ, и в зависимости от этого защита срабатывает с меньшей или большей выдержкой времени. Следует уточнить, что современные дистанционные защиты, обладающие ступенчатыми характеристиками времени, не измеряют каждый раз при КЗ значение указанного выше сопротивления на зажимах измерительного органа и не устанавливают в зависимости от этого большую или меньшую выдержку времени, а всего лишь контролируют зону, в которой произошло повреждение. Время срабатывания защиты при КЗ в любой точке рассматриваемой зоны остается неизменным. Каждая защита выполняется многоступенчатой, причем при КЗ в первой зоне, охватывающей 80-85% длины защищаемой линии, время срабатывания защиты не более 0,15 с. Для второй зоны, выходящей за пределы защищаемой линии, выдержка времени на ступень выше и колеблется в пределах 0,4-0,6 с. При КЗ в третьей зоне выдержка времени еще более увеличивается и выбирается так же, как и для направленных токовых защит.
    На рис. 7.15 показан участок сети с двухсторонним питанием и приведены согласованные характеристики выдержек времени дистанционных защит (ДЗ). При КЗ, например, в точке К1 - первой зоне действия защит ДЗ3 и ДЗ4 - они сработают с минимальным временем соответственно t I3 и t I4. Защиты ДЗ1 и ДЗ6 также придут в действие, но для них повреждение будет находиться в III зоне, и они могут сработать как резервные с временем t III1 и t III6 только в случае отказа в отключении линии БВ собственными защитами.


    4610
    Рис. 7.14. Размещение токовых направленных защит нулевой последовательности на участке сетей и характеристики выдержек времени защит:
    Р31-Р36 - комплекты токовых направленных защит нулевой последовательности


    4611
    Рис. 7.15. Защита участка сети дистанционными защитами и характеристики выдержек времени этих защит:
    ДЗ1-ДЗ6 - комплекты дистанционных защит; l3 и l4 - расстояния от мест установки защит до места повреждения


    При КЗ в точке К2 (шины Б) оно устраняется действием защит ДЗ1 и ДЗ4 с временем t II1 и t II4.
    Дистанционная защита - сложная защита, состоящая из ряда элементов (органов), каждый из которых выполняет определенную функцию. На рис. 7.16 представлена упрощенная схема дистанционной защиты со ступенчатой характеристикой выдержки времени. Схема имеет пусковой и дистанционный органы, а также органы направления и выдержки времени.
    Пусковой орган ПО выполняет функцию отстройки защиты от нормального режима работы и пускает ее в момент возникновения КЗ. В качестве такого органа в рассматриваемой схеме применено реле сопротивления, реагирующее на ток I р и напряжение U p на зажимах реле.
    Дистанционные (или измерительные) органы ДО1 и ДО2 устанавливают меру удаленности места КЗ.
    Каждый из них выполнен при помощи реле сопротивления, которое срабатывает при КЗ, если
    4612
    где Z p - сопротивление на зажимах реле; Z - сопротивление защищаемой линии длиной 1 км; l - длина участка линии до места КЗ, км; Z cp - сопротивление срабатывания реле.
    Из приведенного соотношения видно, что сопротивление на зажимах реле Z p пропорционально расстоянию l до места КЗ.
    Органы выдержки времени ОВ2 и ОВ3 создают выдержку времени, с которой защита действует на отключение линии при КЗ во второй и третьей зонах. Орган направления OHM разрешает работу защиты при направлении мощности КЗ от шин в линию.
    В схеме предусмотрена блокировка БН, выводящая защиту из действия при повреждениях цепей напряжения, питающих защиту. Дело в том, что если при повреждении цепей напряжение на зажимах защиты Uр=0, то Zp=0. Это означает, что и пусковой, и дистанционный органы могут сработать неправильно. Для предотвращения отключения линии при появлении неисправности в цепях напряжения блокировка снимает с защиты постоянный ток и подает сигнал о неисправности цепей напряжения. Оперативный персонал в этом случае обязан быстро восстановить нормальное напряжение на защите. Если по какой-либо причине это не удается выполнить, защиту следует вывести из действия переводом накладки в положение "Отключено".

    4613
    Рис. 7.16. Принципиальная схема дистанционной защиты со ступенчатой характеристикой выдержки времени

    Работа защиты.

    При КЗ на линии срабатывают реле пускового органа ПО и реле органа направления OHM. Через контакты этих реле плюс постоянного тока поступит на контакты дистанционных органов и на обмотку реле времени третьей зоны ОВ3 и приведет его в действие. Если КЗ находится в первой зоне, дистанционный орган ДО1 замкнет свои контакты и пошлет импульс на отключение выключателя без выдержки времени. При КЗ во второй зоне ДО1 работать не будет, так как значение сопротивления на зажимах его реле будет больше значения сопротивления срабатывания. В этом случае сработает дистанционный орган второй зоны ДО2, который запустит реле времени ОВ2. По истечении выдержки времени второй зоны от реле ОВ2 поступит импульс на отключение линии. Если КЗ произойдет в третьей зоне, дистанционные органы ДО1 и ДО2 работать не будут, так как значения сопротивления на их зажимах больше значений сопротивлений срабатывания. Реле времени ОВ3, запущенное в момент возникновения КЗ контактами реле OHM, доработает и по истечении выдержки времени третьей зоны пошлет импульс на отключение выключателя линии. Дистанционный орган для третьей зоны защиты, как правило, не устанавливается.
    В комплекты дистанционных защит входят также устройства, предотвращающие срабатывание защит при качаниях в системе.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-4.html]

     

    Тематики

    Синонимы

    EN

    DE

    • Distanzschutz, m

    FR

     

    импульс набора номера

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    обработка данных
    Систематическое осуществление операций над данными.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    обработка данных
    Технологическая операция, в результате которой изменяет свое значение хотя бы один из показателей, характеризующих состояние данных (объем данных при этом не изменяется).
    [ ГОСТ Р 51170-98]

    обработка данных
    - Любое преобразование данных при решении конкретной задачи.
    - Работа, выполняемая компьютером.
    [ http://www.morepc.ru/dict/]

    обработка данных
    Процесс приведения данных к виду, удобному для использования. Независимо от вида информации, которая должна быть получена, и типа оборудования любая система О.д. выполняет три основные группы операций: подбор исходных, входных данных (см. Сбор данных), собственно их обработку (в процессе которой система оперирует промежуточными данными), получение и анализ результатов, т.е. выходных данных). Выполняет ли эти операции человек или машина (см. Автоматизированная система обработки данных), все равно они следуют при этом заданному алгоритму (для человека это могут быть инструкция, методика, а для ЭВМ — программа). Важным процессом О.д. является агрегирование, укрупнение их от одной к другой ступени хозяйственной иерархии. Проверка статистических данных, приведение их к сопоставимому виду, сложение, вычитание и другие арифметические операции — тоже процессы О.д. Можно назвать также выборку, отсечение ненужных данных, запоминание, изменение последовательности (упорядочение), классификацию и многие другие. О.д. предшествует во времени принятию решений. Она может производиться эпизодически, периодически (т.е. через заданные промежутки времени), в АСУ — также в реальном масштабе времени. Последнее означает, что О.д. производится с той же скоростью, с какой протекают описываемые ими события, иначе говоря — со скоростью, достаточной для анализа событий и управления их последующим ходом.
    [ http://slovar-lopatnikov.ru/]


    Тематики

    EN

     

    перепад давлений

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    порт пункта назначения
    (МСЭ-T G.7041/ Y.1303).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    предварительное сообщение

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    приоритет при отбрасывании
    (МСЭ-T G.8010/ Y.1306).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    проект предложения

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    процессор для обработки данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DP

  • 6 dynamic programming

    1. динамическое программирование

     

    динамическое программирование

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    динамическое программирование
    Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений. Процессы принятия решений, которые строятся по такому принципу, называются многошаговыми процессами. Математически оптимизационная задача строится в Д. п. с помощью таких соотношений, которые последовательно связаны между собой: например, полученный результат для одного года вводится в уравнение для следующего (или, наоборот, для предыдущего), и т.д. Таким образом, можно получить на вычислительной машине результаты решения задачи для любого избранного момента времени и «следовать» дальше. Д.п. применяется не обязательно для задач, связанных с течением времени. Многошаговым может быть и процесс решения вполне «статической» задачи. Таковы, например, некоторые задачи распределения ресурсов. Общим для задач Д.п. является то, что переменные в модели рассматриваются не вместе, а последовательно, одна за другой. Иными словами, строится такая вычислительная схема, когда вместо одной задачи со многими переменными строится много задач с малым числом (обычно даже одной) переменных в каждой. Это значительно сокращает объем вычислений. Однако такое преимущество достигается лишь при двух условиях: когда критерий оптимальности аддитивен, т.е. общее оптимальное решение является суммой оптимальных решений каждого шага, и когда будущие результаты не зависят от предыстории того состояния системы, при котором принимается решение. Все это вытекает из принципа оптимальности Беллмана (см. Беллмана принцип оптимальности), лежащего в основе теории Д.п. Из него же вытекает основной прием — нахождение правил доминирования, на основе которых на каждом шаге производится сравнение вариантов будущего развития и заблаговременное отсеивание заведомо бесперспективных вариантов. Когда эти правила обращаются в формулы, однозначно определяющие элементы последовательности один за другим, их называют разрешающими правилами. Процесс решения при этом складывается из двух этапов. На первом он ведется «с конца»: для каждого из различных предположений о том, чем кончился предпоследний шаг, находится условное оптимальное управление на последнем шаге, т.е. управление, которое надо применить, если предпоследний шаг закончился определенным образом. Такая процедура проводится до самого начала, а затем — второй раз — выполняется от начала к концу, в результате чего находятся уже не условные, а действительно оптимальные шаговые управления на всех шагах операции (см. пример в статье Дерево решений). Несмотря на выигрыш в сокращении вычислений при использовании подобных методов по сравнению с простым перебором возможных вариантов, их объем остается очень большим. Поэтому размерность практических задач Д.п. всегда незначительна, что ограничивает его применение. Можно выделить два наиболее общих класса задач, к которым в принципе мог бы быть применим этот метод, если бы не «проклятие размерности». (На самом деле на таких задачах, взятых в крайне упрощенном виде, пока удается лишь демонстрировать общие основы метода и анализировать экономико-математические модели). Первый — задачи планирования деятельности экономического объекта (предприятия, отрасли и т.п.) с учетом изменения потребности в производимой продукции во времени. Второй класс задач — оптимальное распределение ресурсов между различными направлениями во времени. Сюда можно отнести, в частности, такую интересную задачу: как распределить урожай зерна каждого года на питание и на семена, чтобы в сумме за ряд лет получить наибольшее количество хлеба?
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > dynamic programming

  • 7 allocation problems

    1. распределительные задачи

     

    распределительные задачи
    Класс экономико-математических задач, связанных с распределением ресурсов по работам, которые необходимо выполнить. Если ресурсов достаточно, чтобы каждую работу выполнить наиболее эффективно, задача не возникает. В обратном же случае переброска, передача ресурсов с одной работы на другую приводит к изменению общей эффективности всех работ вместе взятых. Поэтому Р.з. заключается в отыскании наилучшего распределения ресурсов, при котором либо максимизируется общий доход или результат, выраженный в какой-либо другой форме, либо минимизируются затраты. Такие задачи чаще всего приводятся к линейному виду (иногда искусственно за счет упрощений) и решаются методом линейного программирования. Если через xij обозначить объем ресурса i, то математическая формулировка Р.з. такова: найти минимум или максимум целевой функции (минимум затрат или максимум эффекта) при ограничениях по объему ресурсов и потребности в них. При этом различаются два вида таких задач: а) сбалансированная (закрытая) — если общий объем ресурсов равен общей потребности в них ; б) несбалансированная (открытая), когда ? и требуется не только распределить ресурсы по работам (потребителям), но также решить, какие работы не следует выполнять (т.е. каких потребителей не удовлетворять), если ресурсы меньше потребностей, либо какие ресурсы не использовать — в противоположном случае. К Р.з. относятся такие широко распространенные задачи, как транспортная задача линейного программирования, задача о назначениях и многие другие. Задачи распределения могут решаться в статической (однократной) и в динамической постановке. В последнем случае часто применяют методы стохастического программирования (в которых принятие решений основано на вероятностных оценках будущих значений параметров).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > allocation problems

  • 8 economic model

    1. экономико-математическая модель

     

    экономико-математическая модель
    Математическое описание экономического процесса или объекта, произведенное в целях их исследования и управления ими: математическая запись решаемой экономической задачи (поэтому часто термины “модель” и “задача” употребляются как синонимы). Существует еще несколько вариантов определения этого термина. В самой общей форме модель — условный образ объекта исследования, сконструированный для упрощения этого исследования. При построении модели предполагается, что ее непосредственное изучение дает новые знания о моделируемом объекте (см. Моделирование). Все это полностью относится и к Э.-м.м. В принципе в экономике применимы не только математические (знаковые), но и материальные модели. Например, гидравлические (в которых потоки воды имитируют потоки денег и товаров, а резервуары отождествляются с такими экономическими категориями, как объем промышленного производства, личное потребление и др.) и электрические (в США была известна модель «Эконорама», представлявшая собой сложную электрическую схему, в которой имитировались экономические процессы). Но все эти попытки имели лишь демонстрационное применение, а не служили средством изучения закономерностей экономики. С развитием же электронно-вычислительной техники потребность в них, по-видимому, и вовсе отпала. Э.-м.м. оказывается в этих условиях основным средством модельного исследования экономики. Модель может описывать либо внутреннюю структуру объекта, либо, если структура неизвестна, — его поведение, т.е. реакцию на воздействие известных факторов (принцип «черного ящика«). Один и тот же объект может быть описан различными моделями в зависимости от исследовательской или практической потребности, возможностей математического аппарата и т.п. Поэтому всегда необходима оценка модели и области, в которой выводы из ее изучения могут быть достоверны. Во всех случаях необходимо, чтобы модель содержала достаточно детальное описание объекта, позволяющее, в частности, осуществлять измерение экономических величин и их взаимосвязей, чтобы были выделены факторы, воздействующие на исследуемые показатели. Например, формула, по которой определяется на заводе потребность в материалах, исходя из норм расхода, есть Э.-м.м. Если количество видов изделий обозначить через n, нормативы расхода — ai, количество изделий каждого вида — xi, то модель запишется так: где i = 1, 2, …, n. Кроме того, полезно записать условия, в которых она действительна, т.е. ограничения модели (например, лимиты на те или иные материалы). Строго говоря, расчет по такой формуле не даст точного результата: потребность в материалах может зависеть также от случайных изменений в размерах брака и отходов, от страховых запасов и т.д. Но в общем, она зависит именно от указанных двух видов величин: норм расхода материала и объемов выпуска продукции. Первые из них в данном случае называются параметрами модели, вторые — переменными модели. Такая модель называется описательной, или дескриптивной; она описывает зависимость расхода (потребности в материале), от двух факторов: количества изделий и расходных норм. Большое значение в экономике имеют оптимизационные модели (или оптимальные). Они представляют собой системы уравнений, равенств и неравенств, которые кроме ограничений (условий) включают также особого рода уравнение, называемое функционалом или критерием оптимальности. С помощью такого критерия находят решение, наилучшее по какому-либо показателю, например, минимум затрат на материалы при заданном объеме продукции, или, наоборот, максимум продукции (или прибыли) при заданных ограничениях по ресурсам и т.д. Например, можно попытаться найти такой план работы цеха, который при заданном объеме материалов (т.е. их расход не должен быть больше какой-то величины, допустим, B) гарантирует наибольший объем продукции. Единственное, что надо при этом знать дополнительно — цену единицы продукции — pi. Тогда модель будет записываться так при условии Кроме того, обязательно надо учесть, что искомые величины объемов производства каждого изделия не должны быть отрицательными: xi ? 0, i = 1, 2, …, n. Мы получили элементарную оптимизационную модель, относящуюся к типу моделей линейного программирования. Решив эту модель, т.е. узнав значения всех xi от 1-го до n-го, мы получим искомый план. Важное свойство Э.-м.м. — их применимость к разным, на первый взгляд непохожим ситуациям. Например, если в приведенном примере через ai обозначить нормы внесения удобрений, а через xi — размеры участков, то та же самая формула покажет общий объем потребности в удобрениях. Точно такую же формулу можно применить к расчету затрат семьи на покупку разных продуктов, и во многих других случаях. Модель может быть сформулирована тремя способами: в результате прямого наблюдения и изучения некоторых явлений действительности (феноменологический способ), вычленения из более общей модели (дедуктивный способ), обобщения более частных моделей (индуктивный способ). Подобные модели, в которых описывается моментное состояние экономики, называются статическими (от слова «статика»). Те же, которые показывают развитие объекта моделирования, — динамическими. Модели могут строиться не только в виде формул, как рассмотренные здесь (это называется аналитическое представление модели; см. Аналитическая модель), но и в виде числовых примеров (численное представление) и в форме таблиц (матричное представление), и в форме особого рода графов (сетевое представление модели). Соответственно различают модели числовые, аналитические, матричные, сетевые. Экономическая наука давно пользуется моделями. Одной из первых была модель воспроизводства, разработанная французским ученым Ф.Кенэ еще в XYIII в. А в XX в. первая общая модель развивающейся экономики была сконструирована Дж. фон Нейманом. Значительный опыт построения э.-м. моделей накоплен учеными СССР, применявшими их для анализа экономических процессов, прогнозирования и планирования во всех звеньях и на всех уровнях экономики, вплоть до планирования развития народного хозяйства страны в целом, особенно — перспективного. Принято подразделять Э-м.м. на две большие группы: модели, отражающие преимущественно производственный аспект экономики; модели, отражающие преимущественно социальные аспекты экономики. Разумеется, такое деление в значительной степени условно, поскольку в каждой из моделей в той или иной степени сочетаются производственный и социальный аспекты. Из моделей первой группы можно назвать: модели долгосрочного прогноза сводных показателей экономического развития; межотраслевые модели; отраслевые модели оптимального планирования и размещения производства, а также модели оптимизации структуры производства в отраслях. Из моделей второй группы наиболее разработаны модели, связанные с прогнозированием и планированием доходов и потребления населения, демографических процессов. Существует большое число классификаций типов Э.-м.м., которые, однако, носят фрагментарный характер. И это, по-видимому, неизбежно, так как нереально охватить все многообразие социально-экономических задач, объектов и процессов, описываемых различными моделями. Представленные в нашем словаре модели можно условно классифицировать следующим образом 1. Наиболее общее деление моделей — по способу отражения действительности: Аналоговая модель Иконическая модель (то же: портретная модель) Концептуальная модел Структурная модель Функциональная модель. 2. По предназначению (цели создания и применения) модели: Балансовая модель Дескриптивная модель (то же: Описательная) Имитационная модель Информационная модель Нормативная модель (то же: Прескриптивная модель), в т.ч. Оптимальная модель (то же: Оптимизационная модель). 3. По способу логико-математического описания моделируемых экономических систем: Аналитическая модель Вероятностная модель (то же: Стохастическая модель) Детерминированная модель Дискретная модель Линейная модель Математико-статистическая модель Матричная модель Нелинейная модель Непрерывная модель Модель равновесия Неравновесная модель Регрессионная модель Сетевая модель Числовая модель Эконометрическая модель. - дискретного выбора - непрерывной длительности (выживания) -логит-иодель -пробит-модель - тобит-модель.. 4. По временному и пространственному признаку: Гравитационная модель Динамическая модель (см. Динамические модели экономики) Модели с «бесконечным временем» Статическая модель Точечная модель Трендовая модель и др.. 5. По уровню моделируемого объекта в хозяйственной иерархии: Глобальная модель Макроэкономическая модель (то же: Агрегатная модель) Модели мезоэкономики Микроэкономическая модель 6. По внутренней структуре модельного описания системы: Автономная модель Закрытая модель Комплекс моделей Многосекторная модель (многоотраслевая, многопродуктовая) Однопродуктовая модель Открытая модель Система моделей (в том числе многоуровневая или многоступенчатая). 7.. По сфере применения. Выше было указано на необозримость областей применения Э.-м.м.; поэтому мы не даем здесь их перечисления, а отсылаем к соответствующим статьям словаря: например, о прогнозных моделях — к статье Прогнозирование, об отраслевых — к статье Отраслевые задачи оптимального планирования развития и размещения производства, и т.д. Наиболее развитая типология социально-экономических задач и моделей представлена в кн.: Вилкас Э.Й., Майминас Е.З. Решения: теория, информация, моделирование. — М.: “Радио и связь”, 1981.При разработке приведенной выше условной классификации учитывались материалы этой книги.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > economic model

  • 9 economico-mathematical model

    1. экономико-математическая модель

     

    экономико-математическая модель
    Математическое описание экономического процесса или объекта, произведенное в целях их исследования и управления ими: математическая запись решаемой экономической задачи (поэтому часто термины “модель” и “задача” употребляются как синонимы). Существует еще несколько вариантов определения этого термина. В самой общей форме модель — условный образ объекта исследования, сконструированный для упрощения этого исследования. При построении модели предполагается, что ее непосредственное изучение дает новые знания о моделируемом объекте (см. Моделирование). Все это полностью относится и к Э.-м.м. В принципе в экономике применимы не только математические (знаковые), но и материальные модели. Например, гидравлические (в которых потоки воды имитируют потоки денег и товаров, а резервуары отождествляются с такими экономическими категориями, как объем промышленного производства, личное потребление и др.) и электрические (в США была известна модель «Эконорама», представлявшая собой сложную электрическую схему, в которой имитировались экономические процессы). Но все эти попытки имели лишь демонстрационное применение, а не служили средством изучения закономерностей экономики. С развитием же электронно-вычислительной техники потребность в них, по-видимому, и вовсе отпала. Э.-м.м. оказывается в этих условиях основным средством модельного исследования экономики. Модель может описывать либо внутреннюю структуру объекта, либо, если структура неизвестна, — его поведение, т.е. реакцию на воздействие известных факторов (принцип «черного ящика«). Один и тот же объект может быть описан различными моделями в зависимости от исследовательской или практической потребности, возможностей математического аппарата и т.п. Поэтому всегда необходима оценка модели и области, в которой выводы из ее изучения могут быть достоверны. Во всех случаях необходимо, чтобы модель содержала достаточно детальное описание объекта, позволяющее, в частности, осуществлять измерение экономических величин и их взаимосвязей, чтобы были выделены факторы, воздействующие на исследуемые показатели. Например, формула, по которой определяется на заводе потребность в материалах, исходя из норм расхода, есть Э.-м.м. Если количество видов изделий обозначить через n, нормативы расхода — ai, количество изделий каждого вида — xi, то модель запишется так: где i = 1, 2, …, n. Кроме того, полезно записать условия, в которых она действительна, т.е. ограничения модели (например, лимиты на те или иные материалы). Строго говоря, расчет по такой формуле не даст точного результата: потребность в материалах может зависеть также от случайных изменений в размерах брака и отходов, от страховых запасов и т.д. Но в общем, она зависит именно от указанных двух видов величин: норм расхода материала и объемов выпуска продукции. Первые из них в данном случае называются параметрами модели, вторые — переменными модели. Такая модель называется описательной, или дескриптивной; она описывает зависимость расхода (потребности в материале), от двух факторов: количества изделий и расходных норм. Большое значение в экономике имеют оптимизационные модели (или оптимальные). Они представляют собой системы уравнений, равенств и неравенств, которые кроме ограничений (условий) включают также особого рода уравнение, называемое функционалом или критерием оптимальности. С помощью такого критерия находят решение, наилучшее по какому-либо показателю, например, минимум затрат на материалы при заданном объеме продукции, или, наоборот, максимум продукции (или прибыли) при заданных ограничениях по ресурсам и т.д. Например, можно попытаться найти такой план работы цеха, который при заданном объеме материалов (т.е. их расход не должен быть больше какой-то величины, допустим, B) гарантирует наибольший объем продукции. Единственное, что надо при этом знать дополнительно — цену единицы продукции — pi. Тогда модель будет записываться так при условии Кроме того, обязательно надо учесть, что искомые величины объемов производства каждого изделия не должны быть отрицательными: xi ? 0, i = 1, 2, …, n. Мы получили элементарную оптимизационную модель, относящуюся к типу моделей линейного программирования. Решив эту модель, т.е. узнав значения всех xi от 1-го до n-го, мы получим искомый план. Важное свойство Э.-м.м. — их применимость к разным, на первый взгляд непохожим ситуациям. Например, если в приведенном примере через ai обозначить нормы внесения удобрений, а через xi — размеры участков, то та же самая формула покажет общий объем потребности в удобрениях. Точно такую же формулу можно применить к расчету затрат семьи на покупку разных продуктов, и во многих других случаях. Модель может быть сформулирована тремя способами: в результате прямого наблюдения и изучения некоторых явлений действительности (феноменологический способ), вычленения из более общей модели (дедуктивный способ), обобщения более частных моделей (индуктивный способ). Подобные модели, в которых описывается моментное состояние экономики, называются статическими (от слова «статика»). Те же, которые показывают развитие объекта моделирования, — динамическими. Модели могут строиться не только в виде формул, как рассмотренные здесь (это называется аналитическое представление модели; см. Аналитическая модель), но и в виде числовых примеров (численное представление) и в форме таблиц (матричное представление), и в форме особого рода графов (сетевое представление модели). Соответственно различают модели числовые, аналитические, матричные, сетевые. Экономическая наука давно пользуется моделями. Одной из первых была модель воспроизводства, разработанная французским ученым Ф.Кенэ еще в XYIII в. А в XX в. первая общая модель развивающейся экономики была сконструирована Дж. фон Нейманом. Значительный опыт построения э.-м. моделей накоплен учеными СССР, применявшими их для анализа экономических процессов, прогнозирования и планирования во всех звеньях и на всех уровнях экономики, вплоть до планирования развития народного хозяйства страны в целом, особенно — перспективного. Принято подразделять Э-м.м. на две большие группы: модели, отражающие преимущественно производственный аспект экономики; модели, отражающие преимущественно социальные аспекты экономики. Разумеется, такое деление в значительной степени условно, поскольку в каждой из моделей в той или иной степени сочетаются производственный и социальный аспекты. Из моделей первой группы можно назвать: модели долгосрочного прогноза сводных показателей экономического развития; межотраслевые модели; отраслевые модели оптимального планирования и размещения производства, а также модели оптимизации структуры производства в отраслях. Из моделей второй группы наиболее разработаны модели, связанные с прогнозированием и планированием доходов и потребления населения, демографических процессов. Существует большое число классификаций типов Э.-м.м., которые, однако, носят фрагментарный характер. И это, по-видимому, неизбежно, так как нереально охватить все многообразие социально-экономических задач, объектов и процессов, описываемых различными моделями. Представленные в нашем словаре модели можно условно классифицировать следующим образом 1. Наиболее общее деление моделей — по способу отражения действительности: Аналоговая модель Иконическая модель (то же: портретная модель) Концептуальная модел Структурная модель Функциональная модель. 2. По предназначению (цели создания и применения) модели: Балансовая модель Дескриптивная модель (то же: Описательная) Имитационная модель Информационная модель Нормативная модель (то же: Прескриптивная модель), в т.ч. Оптимальная модель (то же: Оптимизационная модель). 3. По способу логико-математического описания моделируемых экономических систем: Аналитическая модель Вероятностная модель (то же: Стохастическая модель) Детерминированная модель Дискретная модель Линейная модель Математико-статистическая модель Матричная модель Нелинейная модель Непрерывная модель Модель равновесия Неравновесная модель Регрессионная модель Сетевая модель Числовая модель Эконометрическая модель. - дискретного выбора - непрерывной длительности (выживания) -логит-иодель -пробит-модель - тобит-модель.. 4. По временному и пространственному признаку: Гравитационная модель Динамическая модель (см. Динамические модели экономики) Модели с «бесконечным временем» Статическая модель Точечная модель Трендовая модель и др.. 5. По уровню моделируемого объекта в хозяйственной иерархии: Глобальная модель Макроэкономическая модель (то же: Агрегатная модель) Модели мезоэкономики Микроэкономическая модель 6. По внутренней структуре модельного описания системы: Автономная модель Закрытая модель Комплекс моделей Многосекторная модель (многоотраслевая, многопродуктовая) Однопродуктовая модель Открытая модель Система моделей (в том числе многоуровневая или многоступенчатая). 7.. По сфере применения. Выше было указано на необозримость областей применения Э.-м.м.; поэтому мы не даем здесь их перечисления, а отсылаем к соответствующим статьям словаря: например, о прогнозных моделях — к статье Прогнозирование, об отраслевых — к статье Отраслевые задачи оптимального планирования развития и размещения производства, и т.д. Наиболее развитая типология социально-экономических задач и моделей представлена в кн.: Вилкас Э.Й., Майминас Е.З. Решения: теория, информация, моделирование. — М.: “Радио и связь”, 1981.При разработке приведенной выше условной классификации учитывались материалы этой книги.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > economico-mathematical model

  • 10 sectoral planning problems

    1. отраслевые задачи оптимального планирования и размещения производства

     

    отраслевые задачи оптимального планирования и размещения производства
    Экономико-математические задачи расчета оптимальных направлений развития отраслей (в ряде случаев — подотраслей и производств). Наибольшее развитие получили в условиях т.н. отраслевой системы управления в бывш. СССР в 70-х — 80-х гг. При этом, как правило, достигался экономический эффект от 5 до 15% (для сопоставимых условий) по сравнению с традиционными методами. Эта работа опиралась на созданные усилиями ЦЭМИ, Института экономики и организации производства СО АН и СОПСа “Основные методические положения оптимизации развития и размещения производства” (1978 г.). Методы решения отраслевых задач применимы (и действительно применяются во многих странах) при планировании деятельности крупных концернов, корпораций, фирм, при государственном программировании и планировании развития экономики. Решением задач отраслевой оптимизации достигаются следующие цели (они по-разному комбинируются в разных задачах): выбор наиболее экономичного варианта строительства, реконструкции и расширения новых предприятий, выбор их территориального размещения, расчет их оптимальных размеров, оптимальная специализация производства и установление кооперационных связей, выбор наиболее совершенной технологии и др. Важная область отраслевой оптимизации — выбор наилучшей номенклатуры выпускаемых изделий с учетом различий экономического эффекта от их применения для различных целей («Задачи оптимизации структуры производства«). В качестве критерия оптимальности в большинстве отраслевых задач выступает минимум затрат на заданный объем конечного продукта рассматриваемой производственной системы. Применяются экономико-математические модели разных типов: динамические и статические, детерминированные и вероятностные, однопродуктовые и многопродуктовые, с дискретными и непрерывными переменными, производственные функции, производственно-транспортные задачи и, наконец, — по характеру отображения хозяйственных связей — матричные и сетевые модели.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > sectoral planning problems

  • 11 smart metering

    1. интеллектуальный учет электроэнергии

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > smart metering

  • 12 Банк инновациялары

    Инновация сөзбе-сөз “новацияға (жаңа енгізілімге) жұмсалған инвестиция” дегенді білдіреді. Жаңа енгізілім бұрын болмаған қайсыбір жаңалық болып табылады. Азаматтық құқыққа сәйкес жаңа енгізілім тараптар жасасқан бір міндеттемені басқасымен ауыстыру туралы олардың келісімі дегенді білдіреді. Осындай ауыстырудың нәтижесі де жаңа енгізілім дегенді білдіреді.

    Инновация буквально означает “инвестиция в новацию”. Новация представляет собой какое-то новшество, ранее не существовавшее. В соответствии с гражданским правом новация означает соглашение сторон о замене одного заключенного ими обязательства другим. Результат такой замены и означает нововведение.

    Банк инновациясы – жаңа банк өнімі немесе операция (технология) нысанында іске асырылған банкінің инновациялық қызметінің ақырғы нәтижесі.

    Банковская инновация – это реализованный в форме нового банковского продукта или операции (технологии) конечный результат инновационной деятельности банка.

    Банк өнімі деп банк көрсететін қызметтің материалдық тұрғыдан ресімделген бөлігі (карта, жинақ кітапшасы, жол чегі, электронды әмиян, т.б.). Банк өнімі қаржы нарығында сатуға арналған зат түрінде болады.

    Под банковским продуктом подразумевается материально оформленная часть банковской услуги (карта, сберегательная книжка, дорожный чек, электронный кошелек и т.д.). Банковский продукт имеет вид вещи, предназначенный для продажи на финансовом рынке.

    Жаңа банк өнімі:

    Новый банковский продукт:

    - жеке-дара;

    - единичный;

    - көпшілік қолды түрлерге бөлінеді.

    - массовый.

    Жеке-дара банк өнімі — жеке өнім. Зат ретінде оны басқа банк өнімдерінің арасында бөлектеп тұратын тек өзіне ғана тән сипатты ерекшеліктері болады. Мысалы, нақты асыл металдан шекілген белгілі бір салмағы бар нақты мәнет, нақты жылжымайтын мүлік, нақты эмитент-банкінің облигациясы, т.б. Оның сатып алушыларының айқын белгіленген шеңбері болады. Сондықтан ол нақты тұтынушыларға арналған есеппен шығарылады.

    Единичный банковский продукт — это индивидуальный продукт. Как вещь, он имеет характерные, только ему присущие особенности, которые выделяют его среди других банковских продуктов. Например, конкретная монета из конкретного драгоценного металла определенной массы, конкретная недвижимость, облигация конкретного эмитента-банка и др. Он имеет четко определенный круг своих покупателей. Поэтому он выпускается в расчете на конкретных потребителей.

    Көпшілік қолды банк өнімі — айқын жеке-дара сипаты жоқ өнім. Оның ерекше сипатты белгілері жоқ. Ол өнім түрлері немесе қаржы активі бойынша ғана ерекшеленеді, мысалы, банк депозиті, банк шоты, мемлекеттік ішкі немесе барлық түрдегі мунипицалдық қарыз облигациялары, т.б. Көпшілік қолды қаржы өнімі тұтынушылар мен инвесторлардың қалың қауымына арналған есеппен шығарылады.

    Массовый банковский продукт — это продукт без четко выраженной индивидуальности. У него нет особых характерных черт. Он различается только по видам продукта или финансового актива, например, банковский депозит, банковский счет, облигации государственного внутреннего или муниципального займа всех видов и др. Массовый финансовый продукт выпускается в расчете на широкий круг потребителей и инвесторов.

    Ол көлемі немесе саны үлестемелетін өнім. Бұл көлем шығару кезінде белгіленеді. Көлем мөлшері көптеген факторлармен: акционерлік банкінің жарғылық капиталымен, тұтынушылардың сұранымымен, т.б. айқындалады. Лимиттелетін банк өнімдеріне акциялар, облигациялар, несие келісімдерінің түрлері, т.б. жатады. Ол нақты сатып алушыға арналған есеппен шығарылады.

    Это продукт, объем или количество которого строго квотируется. Этот объем устанавливается при выпуске. Размер объема определяется многими факторами: размером уставного капитала акционерного банка, спросом потребителей, и т.д. К лимитируемым банковским продуктам относятся акции, облигации, виды кредитных соглашений и др. Он выпускается в расчете на конкретного покупателя.

    Лимиттелмеген банк өнімі – шығарылу көлемі (саны) ешқандай үлестемемен шектелмеген өнім. Ол ықтимал әлеуетті сатып алушыға арналған есеппен шығарылады. Лимиттелмеген банк өніміне: пластикалық есептесу және несиелік карталар, банк шоттары, т.б. жатады.

    Нелимитированный банковский продукт представляет собой продукт, объем (количество) выпуска которого не ограничен никакими квотами. Он выпускается в расчете на возможного потенциального покупателя. К нелимитированному банковскому продукту относятся: пластиковые расчетные и кредитные карты, банковские счета и т.п.

    Жаңа банк өнімі:

    Новый банковский продукт может быть в форме:

    - мүлік;

    - имущества;

    - мүліктік құқық нысанында болуы мүмкін.

    - имущественного права.

    Мүлік деген меншіктің материалдық объектісі, мысалы, ақша, алтынның өлшемді құймасы, мәнет, бағалы қағаздар, т.б.

    Имущество представляет собой материальный объект собственности, например, деньги, мерные слитки золота, монеты, ценные бумаги и др.

    Мүліктік құқықтың мәнісі белгілі бір мүлікті иелену, билеу, пайдалану құқығы дегенді білдіреді. Мүліктік құқық нысанындағы банк өніміне банк шотының шарты, несиелік келісімдер, т.б. сияқтылар жатады.

    Имущественное право означает право владеть, распоряжаться и пользоваться определенным имуществом. К банковскому продукту в форме имущественных прав относятся такие документы, как договор банковского счета, кредитные соглашения и т.п.

    Банк операциясы дегеніміз банк капиталын басқару жөніндегі белгілі бір міндеттерді шешуге бағытталған әрекеттердің рәсімі. Банк операцияларына:

    Банковские операции представляют собой процедуру действий, направленную на решение определенной задачи по управлению банковским капиталом. К банковским операциям относятся:

    - ақшалай қаражат пен бағалы қағаздар қозғалысын бақылау мен есепке алу нысандары;

    - формы контроля и учета движения денежных средств и ценных бумаг;

    - қаржы көрсеткіштерін жоспарлау әдістері;

    - методы планирования финансовых показателей;

    - әртүрлі қаржы жоспарларын жасау әдіснамасы;

    - методология составления финансовых планов разных видов;

    - қаржы талдауының тәсілдері;

    - приемы финансового анализа;

    - банкіде қаржы жұмысын ұйымдастыру нысандары;

    - формы организации финансовой работы в банке;

    - капиталды интерактивтік және басқа ұқсас инвестициялау мен басқа да әрекеттер жатады.

    - интерактивное и другое аналогичное инвестирование капитала и другие действия.

    Банк инновациясының өміршеңдік циклі – белгілі бір уақыт кезеңі, бұл кезең бойына банк өнімі немесе операция белсенді өміршеңдік күшке ие болады және банкіге өнімгер (өндіруші) және инновация сатушы ретінде белгілі бір пайда немесе басқадай нақты тиімділік әкеледі. Өміршеңдік циклі тұжырымдамасының инновациялар өндірісін жоспарлауда және банк аясындағы инновациялық үдерісті ұйымдастыруда зор маңызы бар. Оның мәні мынадан көрініс табады: банк инновациясының өміршеңдік циклінің тұжырымдамасы:

    Жизненный цикл банковской инновации – это определенный период времени, в течение которого банковский продукт или операция обладает активной жизненной силой и приносит банку как продуценту (производителю) и продавцу инновации определенную прибыль или другую реальную выгоду. Концепция жизненного цикла имеет важное значение при планировании производства инноваций и организации инновационного процесса в банковской сфере. Это значение проявляется в том, что концепция жизненного цикла банковской инновации:

    - шаруашылық қызметті қазіргі уақыт тұрғысынан да, оның даму келешегі тұрғысынан да талдауға банк басшысын және оның маркетингілік қызметін мәжбүр етеді;

    - вынуждает руководителя банка и его маркетинговую службу анализировать хозяйственную деятельность как с позиции настоящего времени, так и с точки зрения перспектив ее развития;

    - инновациялардың шығарылымын жоспарлау жөніндегі (идеяларды іздестіру, инновациялық үдерісті ұйымдастыру, банк инновациясын жасау, оны нарықта жылжыту және қайта тарату), сондай-ақ инновацияларды сатып алу жөніндегі (сұранымды зерттеу, банк маркетингі, бенгмаркетинг) жүйелі жұмыстың қажеттілігін негіздейді;

    - обосновывает необходимость систематической работы по планированию выпуска инноваций (поиск идей, организация инновационного процесса, создание банковской инновации, ее продвижение на рынке и диффузия), а также по приобретению инноваций (изучение спроса, банковский маркетинг, бенгмаркетинг);

    - инновацияны талдау және жоспарлау тетігінің негізі болып табылады.

    - является основой механизма анализа и планирования инновации.

    На какие элементы можно разделить процесс планирования банковской инновации?

    Банк инновациясын жоспарлау жөніндегі барлық қызметті мыналарды қамтитын бірқатар нышандарға бөлуге болады:

    Всю деятельность по планированию банковской инновации можно разделить на ряд элементов, которые включают в себя:

    - қаржы нарығын зерттеу;

    - исследование финансового рынка;

    - нарықтың осы активі бойынша банк инновациясы нарығын зерттеу;

    - исследование рынка банковской инновации по данному активу рынка;

    - банк инновациясы өміршеңдігінің ұзақтығын зерттеу;

    - исследование продолжительности жизни банковской инновации;

    - банк инновациясын әзірлеу (яғни банк өнімін немесе жаңа операцияны жасау);

    - разработку банковской инновации (т.е. производство банковского продукта или новой операции);

    - баға саясаты;

    - политику цен;

    - жарнама;

    - рекламу;

    - банк инновациясын жылжыту жөніндегі шаралар;

    - мероприятия по продвижению банковской инновации;

    - банк инновациясын сатуды (өткізуді) ұйымдастыру;

    - организацию продажи (сбыта) банковской инновации;

    - банк инновациясын қайта тарату (диффузия).

    - диффузию банковской инновации.

    Жаңа банк өнімінің өміршеңдік циклі жеті сатыны қамтиды:

    Жизненный цикл нового банковского продукта включает в себя семь стадий:

    - жаңа банк өнімін әзірлеу;

    - разработка нового банковского продукта;

    - нарыққа шығу;

    - выход на рынок;

    - нарықтың дамуы;

    - развитие рынка;

    - нарықтың тұрақтануы;

    - стабилизация рынка;

    - нарықтың өрлеуі;

    - уменьшение рынка;

    - нарықтың азаюы;

    - подъем рынка;

    - нарықтың құлдырауы.

    - падение рынка.

    Своп субъектілер арасында міндеттемелерді немесе активтерді айырбастау жөніндегі валюталық операция болып табылады.

    Своп представляет собой валютную операцию по обмену между субъектами обязательствами или активами.

    Своп:

    Своп подразделяется на:

    - валюталық;

    - валютный;

    - пайыздық;

    - процентный;

    - валюталық-пайыздық;

    - валютно-процентный;

    - нөл купондық своп болып бөлінеді.

    - своп с нулевым купоном.

    Валюталық своп валютаны сатып алу және сонымен бір мезгілде форвардтық сату (депорт) немесе валютаны сату және сонымен бір мезгілде форвардтық сатып алу (репорт) болып табылады.

    Валютный своп представляет собой покупку и одновременную форвардную продажу валюты (депорт) или, наоборот, продажу и одновременную форвардную покупку валюты (репорт).

    Пайыздық своп – қарыз қаражаты бойынша пайыздық мөлшерлемелерді айырбастау.

    Процентный своп – это обмен процентными ставками по заемным средствам.

    Валюталық-пайыздық своп валютамен де, пайызбен де айырбастау болып табылады. Своптың бұл түрі бірнеше қатысушылар арасында жасасылуы мүмкін.

    Валютно-процентный своп представляет собой обмен как валютами, так и процентами. Этот вид свопа может быть заключен между несколькими участниками.

    Нөлдік купонмен жасалатын своптың мәні мынада: купонсыз облигацияның эмитенті тіркелген кірісті бір мезгілде пайыздық своп және жыл сайынғы кері төлем жолымен өзгермелі пайыздық мөлшерлеме бойынша айырбастауы мүмкін.

    Сущность свопа с нулевым купоном заключается в том, что эмитент бескупонной облигации может осуществить обмен фиксированного дохода по плавающей процентной ставке путем одновременного процентного свопа и обратного ежегодного платежа.

    НОУ шот депозиттік салым мен ағымдағы шоттың ұштастырылуы болып табылады. НОУ шоттың иесі 30 күн бұрын хабар алған кезде “өндіріп алу туралы айналыстағы бұйрықтар” деп жазуға және оларды есеп айырысу чектері ретінде төлемдер үшін пайдалануға құқылы болады. НОУ шот бойынша иесіне шот жабылғаннан кейін ғана қайтарылатын салымның міндетті ең аз қалдығы, сондай-ақ салымның қатаң мақсаты белгіленеді.

    Счет НОУ представляет соединение депозитного вклада и текущего счета. Владелец счета НОУ имеет право при уведомлении за 30 дней выписать “обращающиеся приказы об изъятии” и использовать их для платежей как расчетные чеки. По счету НОУ устанавливается обязательный минимальный остаток вклада, который возвращается владельцу только после закрытия счета, а также строгое назначение вклада.

    Своптарды жинақтау операциясы банкімен своп туралы шарт жасасуды және оны банк своп туралы шарттың екінші тарабын іздеп тапқанға дейін сақтандыруды (әдетте фьючерстермен) көздейді. Мысалы, банк инвестормен пайыздық мөлшерлемелерді айырбастау туралы шарт жасасады, сонымен бір мезгілде пайыздық мөлшерлеме шамасын сақтандырады.

    Операция по складированию свопов предполагает заключение договора о свопе с банком и его страхование (обычно фьючерсами) до того момента, пока банк не подыщет вторую сторону договора о свопе. Например, банк заключает с инвестором договор об обмене процентными ставками и одновременно производит страхование величины процентной ставки.

    В чем состоит содержание операции по сочетанию контокоррента с овердрафтом?

    Бұл операцияның мазмұны ақшалай төлемдерді төлеу кезінде, әсіресе валюталық есеп айырысу кезінде оларды бірге пайдалануда. Ақшалай қаражат иеленушінің шотына жасасқан келісімшарт бойынша төлем мерзімінен бұрын түскен кезде ол конторренттік шотқа есептеледі. Егер төлем мерзімі ақшаның түсуінен бұрын басталған болса, онда инвестор банк овердрафтысын пайдаланады. Овердрафт бойынша несие және ол бойынша пайыздар банкіге ақшаның иеленуші шотына түсуі сәтінде қайтарылады.

    Содержание этой операции состоит в их совместном использовании при денежных платежах, особенно при валютных расчетах. Когда денежные средства поступают на счет владельца раньше наступления срока платежа по заключенным контрактам, то они зачисляются на контокоррентный счет. Если срок платежа наступает раньше срока поступления денег, то инвестор использует овердрафт банка. Возврат кредита банку по овердрафту и процентов по нему будет произведен в момент поступления денег на счет владельца.

    Казахско-русский экономический словарь > Банк инновациялары

  • 13 Банк инновациялары

    Инновация сөзбе-сөз “новацияға (жаңа енгізілімге) жұмсалған инвестиция” дегенді білдіреді. Жаңа енгізілім бұрын болмаған қайсыбір жаңалық болып табылады. Азаматтық құқыққа сәйкес жаңа енгізілім тараптар жасасқан бір міндеттемені басқасымен ауыстыру туралы олардың келісімі дегенді білдіреді. Осындай ауыстырудың нәтижесі де жаңа енгізілім дегенді білдіреді.

    Инновация буквально означает “инвестиция в новацию”. Новация представляет собой какое-то новшество, ранее не существовавшее. В соответствии с гражданским правом новация означает соглашение сторон о замене одного заключенного ими обязательства другим. Результат такой замены и означает нововведение.

    Банк инновациясы – жаңа банк өнімі немесе операция (технология) нысанында іске асырылған банкінің инновациялық қызметінің ақырғы нәтижесі.

    Банковская инновация – это реализованный в форме нового банковского продукта или операции (технологии) конечный результат инновационной деятельности банка.

    Банк өнімі деп банк көрсететін қызметтің материалдық тұрғыдан ресімделген бөлігі (карта, жинақ кітапшасы, жол чегі, электронды әмиян, т.б.). Банк өнімі қаржы нарығында сатуға арналған зат түрінде болады.

    Под банковским продуктом подразумевается материально оформленная часть банковской услуги (карта, сберегательная книжка, дорожный чек, электронный кошелек и т.д.). Банковский продукт имеет вид вещи, предназначенный для продажи на финансовом рынке.

    Жаңа банк өнімі:

    Новый банковский продукт:

    - жеке-дара;

    - единичный;

    - көпшілік қолды түрлерге бөлінеді.

    - массовый.

    Жеке-дара банк өнімі — жеке өнім. Зат ретінде оны басқа банк өнімдерінің арасында бөлектеп тұратын тек өзіне ғана тән сипатты ерекшеліктері болады. Мысалы, нақты асыл металдан шекілген белгілі бір салмағы бар нақты мәнет, нақты жылжымайтын мүлік, нақты эмитент-банкінің облигациясы, т.б. Оның сатып алушыларының айқын белгіленген шеңбері болады. Сондықтан ол нақты тұтынушыларға арналған есеппен шығарылады.

    Единичный банковский продукт — это индивидуальный продукт. Как вещь, он имеет характерные, только ему присущие особенности, которые выделяют его среди других банковских продуктов. Например, конкретная монета из конкретного драгоценного металла определенной массы, конкретная недвижимость, облигация конкретного эмитента-банка и др. Он имеет четко определенный круг своих покупателей. Поэтому он выпускается в расчете на конкретных потребителей.

    Көпшілік қолды банк өнімі — айқын жеке-дара сипаты жоқ өнім. Оның ерекше сипатты белгілері жоқ. Ол өнім түрлері немесе қаржы активі бойынша ғана ерекшеленеді, мысалы, банк депозиті, банк шоты, мемлекеттік ішкі немесе барлық түрдегі мунипицалдық қарыз облигациялары, т.б. Көпшілік қолды қаржы өнімі тұтынушылар мен инвесторлардың қалың қауымына арналған есеппен шығарылады.

    Массовый банковский продукт — это продукт без четко выраженной индивидуальности. У него нет особых характерных черт. Он различается только по видам продукта или финансового актива, например, банковский депозит, банковский счет, облигации государственного внутреннего или муниципального займа всех видов и др. Массовый финансовый продукт выпускается в расчете на широкий круг потребителей и инвесторов.

    Ол көлемі немесе саны үлестемелетін өнім. Бұл көлем шығару кезінде белгіленеді. Көлем мөлшері көптеген факторлармен: акционерлік банкінің жарғылық капиталымен, тұтынушылардың сұранымымен, т.б. айқындалады. Лимиттелетін банк өнімдеріне акциялар, облигациялар, несие келісімдерінің түрлері, т.б. жатады. Ол нақты сатып алушыға арналған есеппен шығарылады.

    Это продукт, объем или количество которого строго квотируется. Этот объем устанавливается при выпуске. Размер объема определяется многими факторами: размером уставного капитала акционерного банка, спросом потребителей, и т.д. К лимитируемым банковским продуктам относятся акции, облигации, виды кредитных соглашений и др. Он выпускается в расчете на конкретного покупателя.

    Лимиттелмеген банк өнімі – шығарылу көлемі (саны) ешқандай үлестемемен шектелмеген өнім. Ол ықтимал әлеуетті сатып алушыға арналған есеппен шығарылады. Лимиттелмеген банк өніміне: пластикалық есептесу және несиелік карталар, банк шоттары, т.б. жатады.

    Нелимитированный банковский продукт представляет собой продукт, объем (количество) выпуска которого не ограничен никакими квотами. Он выпускается в расчете на возможного потенциального покупателя. К нелимитированному банковскому продукту относятся: пластиковые расчетные и кредитные карты, банковские счета и т.п.

    Жаңа банк өнімі:

    Новый банковский продукт может быть в форме:

    - мүлік;

    - имущества;

    - мүліктік құқық нысанында болуы мүмкін.

    - имущественного права.

    Мүлік деген меншіктің материалдық объектісі, мысалы, ақша, алтынның өлшемді құймасы, мәнет, бағалы қағаздар, т.б.

    Имущество представляет собой материальный объект собственности, например, деньги, мерные слитки золота, монеты, ценные бумаги и др.

    Мүліктік құқықтың мәнісі белгілі бір мүлікті иелену, билеу, пайдалану құқығы дегенді білдіреді. Мүліктік құқық нысанындағы банк өніміне банк шотының шарты, несиелік келісімдер, т.б. сияқтылар жатады.

    Имущественное право означает право владеть, распоряжаться и пользоваться определенным имуществом. К банковскому продукту в форме имущественных прав относятся такие документы, как договор банковского счета, кредитные соглашения и т.п.

    Банк операциясы дегеніміз банк капиталын басқару жөніндегі белгілі бір міндеттерді шешуге бағытталған әрекеттердің рәсімі. Банк операцияларына:

    Банковские операции представляют собой процедуру действий, направленную на решение определенной задачи по управлению банковским капиталом. К банковским операциям относятся:

    - ақшалай қаражат пен бағалы қағаздар қозғалысын бақылау мен есепке алу нысандары;

    - формы контроля и учета движения денежных средств и ценных бумаг;

    - қаржы көрсеткіштерін жоспарлау әдістері;

    - методы планирования финансовых показателей;

    - әртүрлі қаржы жоспарларын жасау әдіснамасы;

    - методология составления финансовых планов разных видов;

    - қаржы талдауының тәсілдері;

    - приемы финансового анализа;

    - банкіде қаржы жұмысын ұйымдастыру нысандары;

    - формы организации финансовой работы в банке;

    - капиталды интерактивтік және басқа ұқсас инвестициялау мен басқа да әрекеттер жатады.

    - интерактивное и другое аналогичное инвестирование капитала и другие действия.

    Банк инновациясының өміршеңдік циклі – белгілі бір уақыт кезеңі, бұл кезең бойына банк өнімі немесе операция белсенді өміршеңдік күшке ие болады және банкіге өнімгер (өндіруші) және инновация сатушы ретінде белгілі бір пайда немесе басқадай нақты тиімділік әкеледі. Өміршеңдік циклі тұжырымдамасының инновациялар өндірісін жоспарлауда және банк аясындағы инновациялық үдерісті ұйымдастыруда зор маңызы бар. Оның мәні мынадан көрініс табады: банк инновациясының өміршеңдік циклінің тұжырымдамасы:

    Жизненный цикл банковской инновации – это определенный период времени, в течение которого банковский продукт или операция обладает активной жизненной силой и приносит банку как продуценту (производителю) и продавцу инновации определенную прибыль или другую реальную выгоду. Концепция жизненного цикла имеет важное значение при планировании производства инноваций и организации инновационного процесса в банковской сфере. Это значение проявляется в том, что концепция жизненного цикла банковской инновации:

    - шаруашылық қызметті қазіргі уақыт тұрғысынан да, оның даму келешегі тұрғысынан да талдауға банк басшысын және оның маркетингілік қызметін мәжбүр етеді;

    - вынуждает руководителя банка и его маркетинговую службу анализировать хозяйственную деятельность как с позиции настоящего времени, так и с точки зрения перспектив ее развития;

    - инновациялардың шығарылымын жоспарлау жөніндегі (идеяларды іздестіру, инновациялық үдерісті ұйымдастыру, банк инновациясын жасау, оны нарықта жылжыту және қайта тарату), сондай-ақ инновацияларды сатып алу жөніндегі (сұранымды зерттеу, банк маркетингі, бенгмаркетинг) жүйелі жұмыстың қажеттілігін негіздейді;

    - обосновывает необходимость систематической работы по планированию выпуска инноваций (поиск идей, организация инновационного процесса, создание банковской инновации, ее продвижение на рынке и диффузия), а также по приобретению инноваций (изучение спроса, банковский маркетинг, бенгмаркетинг);

    - инновацияны талдау және жоспарлау тетігінің негізі болып табылады.

    - является основой механизма анализа и планирования инновации.

    На какие элементы можно разделить процесс планирования банковской инновации?

    Банк инновациясын жоспарлау жөніндегі барлық қызметті мыналарды қамтитын бірқатар нышандарға бөлуге болады:

    Всю деятельность по планированию банковской инновации можно разделить на ряд элементов, которые включают в себя:

    - қаржы нарығын зерттеу;

    - исследование финансового рынка;

    - нарықтың осы активі бойынша банк инновациясы нарығын зерттеу;

    - исследование рынка банковской инновации по данному активу рынка;

    - банк инновациясы өміршеңдігінің ұзақтығын зерттеу;

    - исследование продолжительности жизни банковской инновации;

    - банк инновациясын әзірлеу (яғни банк өнімін немесе жаңа операцияны жасау);

    - разработку банковской инновации (т.е. производство банковского продукта или новой операции);

    - баға саясаты;

    - политику цен;

    - жарнама;

    - рекламу;

    - банк инновациясын жылжыту жөніндегі шаралар;

    - мероприятия по продвижению банковской инновации;

    - банк инновациясын сатуды (өткізуді) ұйымдастыру;

    - организацию продажи (сбыта) банковской инновации;

    - банк инновациясын қайта тарату (диффузия).

    - диффузию банковской инновации.

    Жаңа банк өнімінің өміршеңдік циклі жеті сатыны қамтиды:

    Жизненный цикл нового банковского продукта включает в себя семь стадий:

    - жаңа банк өнімін әзірлеу;

    - разработка нового банковского продукта;

    - нарыққа шығу;

    - выход на рынок;

    - нарықтың дамуы;

    - развитие рынка;

    - нарықтың тұрақтануы;

    - стабилизация рынка;

    - нарықтың өрлеуі;

    - уменьшение рынка;

    - нарықтың азаюы;

    - подъем рынка;

    - нарықтың құлдырауы.

    - падение рынка.

    Своп субъектілер арасында міндеттемелерді немесе активтерді айырбастау жөніндегі валюталық операция болып табылады.

    Своп представляет собой валютную операцию по обмену между субъектами обязательствами или активами.

    Своп:

    Своп подразделяется на:

    - валюталық;

    - валютный;

    - пайыздық;

    - процентный;

    - валюталық-пайыздық;

    - валютно-процентный;

    - нөл купондық своп болып бөлінеді.

    - своп с нулевым купоном.

    Валюталық своп валютаны сатып алу және сонымен бір мезгілде форвардтық сату (депорт) немесе валютаны сату және сонымен бір мезгілде форвардтық сатып алу (репорт) болып табылады.

    Валютный своп представляет собой покупку и одновременную форвардную продажу валюты (депорт) или, наоборот, продажу и одновременную форвардную покупку валюты (репорт).

    Пайыздық своп – қарыз қаражаты бойынша пайыздық мөлшерлемелерді айырбастау.

    Процентный своп – это обмен процентными ставками по заемным средствам.

    Валюталық-пайыздық своп валютамен де, пайызбен де айырбастау болып табылады. Своптың бұл түрі бірнеше қатысушылар арасында жасасылуы мүмкін.

    Валютно-процентный своп представляет собой обмен как валютами, так и процентами. Этот вид свопа может быть заключен между несколькими участниками.

    Нөлдік купонмен жасалатын своптың мәні мынада: купонсыз облигацияның эмитенті тіркелген кірісті бір мезгілде пайыздық своп және жыл сайынғы кері төлем жолымен өзгермелі пайыздық мөлшерлеме бойынша айырбастауы мүмкін.

    Сущность свопа с нулевым купоном заключается в том, что эмитент бескупонной облигации может осуществить обмен фиксированного дохода по плавающей процентной ставке путем одновременного процентного свопа и обратного ежегодного платежа.

    НОУ шот депозиттік салым мен ағымдағы шоттың ұштастырылуы болып табылады. НОУ шоттың иесі 30 күн бұрын хабар алған кезде “өндіріп алу туралы айналыстағы бұйрықтар” деп жазуға және оларды есеп айырысу чектері ретінде төлемдер үшін пайдалануға құқылы болады. НОУ шот бойынша иесіне шот жабылғаннан кейін ғана қайтарылатын салымның міндетті ең аз қалдығы, сондай-ақ салымның қатаң мақсаты белгіленеді.

    Счет НОУ представляет соединение депозитного вклада и текущего счета. Владелец счета НОУ имеет право при уведомлении за 30 дней выписать “обращающиеся приказы об изъятии” и использовать их для платежей как расчетные чеки. По счету НОУ устанавливается обязательный минимальный остаток вклада, который возвращается владельцу только после закрытия счета, а также строгое назначение вклада.

    Своптарды жинақтау операциясы банкімен своп туралы шарт жасасуды және оны банк своп туралы шарттың екінші тарабын іздеп тапқанға дейін сақтандыруды (әдетте фьючерстермен) көздейді. Мысалы, банк инвестормен пайыздық мөлшерлемелерді айырбастау туралы шарт жасасады, сонымен бір мезгілде пайыздық мөлшерлеме шамасын сақтандырады.

    Операция по складированию свопов предполагает заключение договора о свопе с банком и его страхование (обычно фьючерсами) до того момента, пока банк не подыщет вторую сторону договора о свопе. Например, банк заключает с инвестором договор об обмене процентными ставками и одновременно производит страхование величины процентной ставки.

    В чем состоит содержание операции по сочетанию контокоррента с овердрафтом?

    Бұл операцияның мазмұны ақшалай төлемдерді төлеу кезінде, әсіресе валюталық есеп айырысу кезінде оларды бірге пайдалануда. Ақшалай қаражат иеленушінің шотына жасасқан келісімшарт бойынша төлем мерзімінен бұрын түскен кезде ол конторренттік шотқа есептеледі. Егер төлем мерзімі ақшаның түсуінен бұрын басталған болса, онда инвестор банк овердрафтысын пайдаланады. Овердрафт бойынша несие және ол бойынша пайыздар банкіге ақшаның иеленуші шотына түсуі сәтінде қайтарылады.

    Содержание этой операции состоит в их совместном использовании при денежных платежах, особенно при валютных расчетах. Когда денежные средства поступают на счет владельца раньше наступления срока платежа по заключенным контрактам, то они зачисляются на контокоррентный счет. Если срок платежа наступает раньше срока поступления денег, то инвестор использует овердрафт банка. Возврат кредита банку по овердрафту и процентов по нему будет произведен в момент поступления денег на счет владельца.

    Қазақ-орыс анықтағыш-тілашар банктік жүйенің жұмыскерлерінің > Банк инновациялары

  • 14 space complexity

    1) Компьютерная техника: пространственная сложность
    3) Вычислительная техника: пространственная сложность алгоритма (требуемый объём памяти как функция размерности задачи), пространственная сложность (требуемый объем памяти как функция размерности задачи; алгоритма)
    4) Программирование: пространственная сложность (алгоритма) (характеризуется ростом требуемого объёма памяти при росте размерности задачи)

    Универсальный англо-русский словарь > space complexity

  • 15 Bioinformatics

    Биоинформатика — новое направление исследований, использующее математические и алгоритмические методы для решения молекулярно-биологических задач. В отечественной генетике зарождение этого направления тесно связано со становлением и развитием Института цитологии и генетики СО АН СССР в Новосибирском Академгородке. Первая международная конференция по Б. регуляции и структуры генома в странах СНГ была организована и проведена в этом институте (24–31 августа 1998 г.). Совершенствование экспериментальных методов приводит к экспоненциальному росту молекулярно-биологических данных и возникновению абсолютно новой для биологии междисциплинарной задачи анализа и хранения информации из лабораторий, рассеянных по всему миру. Задачи Б. можно определить как развитие и использование математических и компьютерных методов для решения проблем молекулярной биологии. Выделяют: (1) Задачу поддержания и обновления баз данных. Современная эра в молекулярной биологии началась с момента открытия двойной спирали Уотсоном и Криком в 1953 г. Эта революция породила большой объем данных полученных прямым чтением ДНК из разных участков геномов. Быстрое секвенирование стало возможно 10 лет назад, первый полностью секвенированный геном — геном бактерии Haemophilus influenzae, 1800 т.п.н. В 1996 г. закончено секвенирование первого генома эукариот, генома дрожжей (10 млн п.н.) и секвенирование продолжается со скоростью более 7 миллионов нуклеотидов в год. Знание геномной ДНК в значительной мере сделало возможным ряд фундаментальных биологических открытий, таких как интроны, самосплайсирующиеся РНК (см. РНК-процессинг), обратная транскрипция и псевдогены. Однако существующие базы данных не вполне адекватны требованиям молекулярных биологов: одной из нерешенных проблем является создание программного обеспечения для простого и гибкого доступа к данным. (2) Другой класс задач в большей степени ориентирован на поиск оптимальных алгоритмов для анализа последовательностей. Типичным примером такой задачи является задача выравнивания: как выявить сходство между двумя последовательностями, зная их нуклеотидный состав? Задача решается множество раз в день, поэтому нужен оптимальный алгоритм с минимальным временем выравнивания. (3) Можно также выделить ряд направлений современной Б.: создание и поддержка баз данных (БД) регуляторных последовательностей и белков; БД по регуляции генной экспрессии; БД по генным сетям; компьютерный анализ и моделирование метаболических путей; компьютерные методы анализа и распознавания в геноме регуляторных последовательностей; методы анализа и предсказания активности функциональных сайтов в нуклеотидных последовательностях геномов; компьютерные технологии для изучения генной регуляции; предсказания структуры генов; моделирование транскрипционного и трансляционного контроля генной экспрессии; широкомасштабный геномный анализ и функциональное аннотирование нуклеотидных последовательностей; поиск объективных методов аннотирования и выявления различных сигналов в нуклеотидных последовательностях; эволюция регуляторных последовательностей в геномах; характеристики белковой структуры, связанные с регуляцией; экспериментальные исследования механизмов генной экспрессии и развитие интерфейса, связывающего экспериментальные данные с компьютерным анализом геномов. Первые работы по компьютерному анализу последовательностей биополимеров появились еще в 1960-1970-х годах, однако формирование вычислительной биологии как самостоятельной области началось в 1980-х годах после развития методов массового секвенирования ДНК. С точки зрения биолога-экспериментатора, можно выделить пять направлений вычислительной биологии: непосредственная поддержка эксперимента (физическое картирование (см. Физическая карта), создание контиг (см.) и т.п.), организация и поддержание банков данных, анализ структуры и функции ДНК и белков, эволюционные и филогенетические исследования, а также собственно статистический анализ нуклеотидных последовательностей. Разумеется, границы между этими направлениями в значительной мере условны: результаты распознавания белок-кодирующих областей используются в экспериментах по идентификации генов, одним из основных методов предсказания функции белков является поиск сходных белков в базах данных, а для осуществления детального предсказания клеточной роли белка необходимо привлекать филогенетические соображения. В 1982 г. возникли GenBank и EMBL — основные банки нуклеотидных последовательностей. Вскоре после этого были созданы программы быстрого поиска по банку — FASTA и затем BLAST. Позднее были разработаны методы анализа далеких сходств и выделения функциональных паттернов в белках. Оказалось, что даже при отсутствии близких гомологов, можно достаточно уверенно предсказывать функции белков. Эти методы с успехом применялись при анализе вирусных геномов, а затем и позиционно клонированных генов человека. Алгоритмы анализа функциональных сигналов в ДНК ( промоторов, операторов, сайтов связывания рибосом) менее надежны, однако и они в ряде случаев были успешно применены, напр., при анализе пуринового регулона Escherichia coli. Идет активная работа над созданием алгоритмов предсказания вторичной структуры РНК. Алгоритмические аспекты этой проблемы были разрешены достаточно быстро, однако оказалось, что точность экспериментально определенных физических параметров не позволяет осуществлять надежные предсказания. В то же время, сравнительный подход, позволяющий построить общую структуру для группы родственных или выполняющих одну и ту же функцию РНК, дает существенно более точные результаты. Другим важным достижением, связанным с рибосомальными РНК, стало построение эволюционного древа прокариот и вытекающей из него естественной классификации бактерий, используемой в банках нуклеотидных последовательностей, в частности GenBank. Статистическая информация (в виде предсказания GenScan), последовательности гомологичных белков и последовательности EST являются исходным материалом для предсказания генов в последовательностях ДНК человека программой ААТ. Алгоритмы, объединяющие анализ функциональных сигналов в нуклеотидных последовательностях и предсказание вторичной структуры РНК, используются для поиска генов тРНК и самосплайсирующихся интронов. Одновременный анализ белковых гомологий и функциональных сигналов позволил получить интересные результаты при эволюцию системы репликации по механизму катящегося кольца. Опыт показывает, что надежное предсказание функции белка по аминокислотной последовательности возможно лишь при одновременном применении разнонаправленных программ структурного и функционального анализа. Основное — это приближение теоретических методов к биологической практике. Во-первых, вновь создаваемые алгоритмы все ближе имитируют работу биолога. В частности, был формализован итеративный подход к поиску родственных белков в банках данных, позволяющий работать со слабыми гомологиями и искать отдаленные члены белковых семейств. При этом все члены семейства, идентифицированные на очередном шаге, используются для создания очередного образа семейства, являющегося основой для следующего запроса к базе данных. Другим примером являются алгоритмы, формализующие сравнительный подход к предсказанию вторичной структуры регуляторных РНК. Во-вторых, создаваемые алгоритмы непосредственно приближаются к экспериментальной практике. Так, повышение избирательности методов распознавания белок-кодирующих областей (возможно, за счет уменьшения чувствительности) позволяет осуществлять предсказание специфичных гибридизационных зондов и затравок ПЦР. Наконец, развитие Интернета — электронной почты и затем WWW — сняло зависимость от модели компьютера и операционной системы и сделало программы универсальным рабочим инструментом.

    Англо-русский толковый словарь генетических терминов > Bioinformatics

  • 16 break

    1. сущ.
    1) общ. разрыв, прекращение (прерывание последовательности или единообразия, напр., изменение погоды, изменение во взглядах, отношении к чему-л. и т. д.), неожиданное изменение, перелом

    Both agenda items signal a break with past ideas. — Оба пункта повестки дня свидетельствуют о отказе от старых идей.

    See:
    2)
    а) общ. перерыв; пауза, интервал (в какой-л. деятельности для отдыха или осуществления другой деятельности, напр., перекур на работе)

    We work without a break. — Мы работаем без перерыва.

    See:
    Syn:
    recess 1) а)
    в) эк. тр. перерыв, пауза (промежуток времени, в течение которого лицо не занимается своей профессиональной деятельностью, а проходит переобучение, находится в отпуске по уходу за ребенком и т. д.)
    Syn:
    г) рекл., СМИ пауза, перерыв (запланированная приостановка теле- или радиопрограммы для передачи рекламного сообщения)
    See:
    3) торг. перелом* (объем покупки, заказа и т. д., при котором происходит изменение цены товара, тарифа на перевозку или других затрат; термин используется преимущественно в контексте ступенчатого предоставления скидок за количество и обозначает объем покупок, дающий изменение цены)
    Syn:
    price break 1) а)
    See:
    2. гл.
    1)
    а) общ. ломать, портить; ломаться; разбивать(ся)

    to break a clock [a sewing-machine\] — сломать часы [швейную машинку\]

    б) общ. разбивать, разделять ( на части)
    2) общ. разрывать, прорывать; преодолевать

    Buffalo, a consumer-oriented company, broke the price barrier by selling a terabyte of disk space for $1000. — Buffalo, ориентированная на потребителя компания, преодолела ценовой барьер, продавая терабайт дискового пространства за $1000.

    3)
    а) общ. прерывать, нарушать

    to break the thread of thought — прервать ход [нить\] мысли

    б) общ. прекращать, прерывать (переговоры и т. п.); рвать, разрывать, порывать (отношения и т. п.)

    to break with a firm — разорвать отношения с фирмой, уволиться

    4) фин. разорять, приводить к банкротству; разоряться

    The bank broke. — Банк разорился.

    See:
    5) общ. нарушать (право, обещание, закон)

    to break a law [promise\] — нарушить закон [обещание\]

    6) юр. аннулировать по решению суда (завещание и т. п.)
    7) общ. сломить (сопротивление, волю и т. п.)

    to break (up) a strike — подавить [сорвать\] забастовку


    * * *
    1) резкое и быстрое падение цен после подъема; 2) пробел в статистике; разночтения в учете финансовых операций; 3) удача (в т. ч. в рыночных операциях); 4) скидка с цены в случае покупки определенного количества товара.
    * * *
    . Быстрое и резкое снижение цены . Инвестиционная деятельность .

    Англо-русский экономический словарь > break

  • 17 capacity

    1. установленная мощность (электростанции)
    2. разрядность
    3. производственная мощность (бурового станка)
    4. производственная мощность
    5. производительность ВА
    6. производительность
    7. объём
    8. информационная емкость запоминающего устройства
    9. емкость
    10. выход продукции

     

    выход продукции

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    информационная емкость запоминающего устройства
    емкость

    Наибольшее количество единиц данных, которое одновременно может храниться в запоминающем устройстве.
    [ ГОСТ 25492-82]

    Тематики

    • устройства цифр. выч. машин запоминающие

    Синонимы

    EN

     

    объём

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    производительность ВА
    производительность ветроагрегата

    Зависимость объема продукции, производимого ВА за единицу времени, от средней скорости ветра.
    [ ГОСТ Р 51237-98]

    Тематики

    Синонимы

    EN

     

    производственная мощность
    Расчетный максимально возможный в определенных условиях объем выпуска изделий в единицу времени
    [ ГОСТ 14.004-83]

    производственная мощность
    Отрасли, предприятия, его подразделения — расчетный, максимально возможный объем выпуска продукции в единицу времени при наиболее полном использовании существующего оборудования и площадей, рабочей силы, при данном уровне технологии и организации производства. Длительное время в СССР была распространена и осуществлялась на практике концепция о необходимости полной, предельной загрузки П.м. Наряду с очевидной экономией издержек в расчете на единицу продукции это приводило к негибкости производства, замедленному реагированию (отклику) на изменение спроса, к стагнации технического прогресса и другим отрицательным последствиям. Следовательно, необходима оптимальная загрузка мощностей: для решения этой задачи разработан ряд прикладных экономико-математических моделей.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    производственная мощность (бурового станка)
    производительность (компрессора)
    нагрузка
    пропускная способность


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    разрядность
    допустимый диапазон чисел


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    установленная мощность (электростанции)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    3.34 емкость (capacity): Количество электрической энергии или электрический заряд, который может быть получен от полностью заряженной аккумуляторной батареи в определенных условиях.

    Источник: ГОСТ Р МЭК 61241-0-2007: Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 0. Общие требования оригинал документа

    3.6.4 производительность (capacity): Способность системы, подсистемы или производственного ресурса выполнить предполагаемую функцию с количественной точки зрения.

    Пример - Производительность системы или ресурса для производства данного количества продукции в течение определенного периода времени.

    Примечание - Для данной системы или ресурса в некоторых случаях целесообразно делать различие между имеющейся и требуемой производительностью.

    Источник: ГОСТ Р ИСО 15531-1-2008: Промышленные автоматизированные системы и интеграция. Данные по управлению промышленным производством. Часть 1. Общий обзор оригинал документа

    Англо-русский словарь нормативно-технической терминологии > capacity

  • 18 marginal cost

    1. предельные издержки
    2. предельные затраты
    3. маржинальные издержки
    4. маржинальная стоимость
    5. максимальная себестоимость

     

    максимальная себестоимость
    предельные издержки


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    маржинальная стоимость
    Величина, на которую изменится стоимость продукции или услуг при изменении уровня деятельности в случае применения метода калькуляции по прямым затратам.
    [ http://www.lexikon.ru/dict/uprav/index.html]

    Тематики

    EN

     

    маржинальные издержки
    предельные издержки

    Дополнительные издержки при производстве дополнительной единицы продукции. В условиях современной конкуренции предельные издержки были бы равны рыночной цене.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    Синонимы

    EN

     

    предельные затраты
    MC(q)

    Затраты по производству дополнительной (или последней) единицы товара (например, дополнительная стоимость топлива следующего кВтч электроэнергии, при условии, что определенный объем уже произведен).
    [Англо-русский глосcарий энергетических терминов ERRA]

    EN

    marginal cost
    MC(q)

    The cost of producing an additional (or the last) unit of good (e.g.: incremental fuel cost of the next kWh of electricity given that a certain amount is already produced).
    [Англо-русский глосcарий энергетических терминов ERRA]

    Тематики

    Синонимы

    EN

     

    предельные издержки
    (ITIL Service Strategy)
    Изменение затрат при производстве одной единицы продукта или услуги. Например, стоимость поддержки одного пользователя.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    предельные издержки
    Показатель предельного анализа производственной деятельности (см. Производственная функция), дополнительные затраты на производство единицы дополнительной продукции [1]. Для каждого уровня производства существует особое, отличное от других значение П.и. Математически они выступают как частные производные функции издержек С(х) по данному виду деятельности: При рассмотрении состояния производства в данный момент постоянные производственные затраты не оказывают влияния на уровень П.и., они определяются лишь переменными издержками. При рассмотрении же в более длительной перспективе они могут расти, оставаться неизменными или падать в зависимости от эффекта масштаба производства и других факторов. Низкий предельный продукт фактора означает, что необходимо большое количество дополнительных ресурсов для производства большего объема продукции, что ведет к высоким предельным издержкам. И наоборот. В общем, при снижении предельного продукта фактора предельные издержки производства возрастают, при повышении — падают. Всегда при увеличении выпуска продукции наступает такой момент, когда П.и. (дополнительные издержки) и предельная выручка предприятия совпадают. (Это результат взаимодействия разных процессов: с одной стороны, с ростом производства себестоимость продукции снижается сначала быстро, затем медленнее, с другой — на определенном этапе растут издержки, связанные со сбытом и т.д.). Следовательно, предельная прибыль оказывается равной нулю. Средствами предельного анализа доказывается, что именно в этот момент общая прибыль достигает наибольших размеров (при дальнейшем увеличении выпуска предельная выручка будет меньше, чем П.и.). Если размер прибыли считать критерием оптимальности, то это означает: данный объем производства для предприятия оптимален. Описанные процессы хорошо прослеживаются на рис. Д.5 к статье «Доходы» и на рис. И.1, И.2, к статье «Издержки». Можно встретить тот же термин, применяемый в ином смысле: П.и. (замыкающими) называют себестоимость производства на замыкающем предприятии — последнем, включенном в оптимальный план (те, у кого издержки выше, не попадают в такой план). Совпадение это не случайно: если рассматривать выработку отраслевого плана (например, в типичных для современной России условиях, – плана крупной госкорпорации) как решение оптимизационной задачи на минимум совокупных затрат (потребных для производства заданного объема продукции), то включение в план замыкающего предприятия как раз и приводит к равенству предельных затрат и предельного эффекта в целом по отрасли, т.е. делает план оптимальным. [1] См. предыдущую сноску.
    [ http://slovar-lopatnikov.ru/]

    EN

    marginal cost
    (ITIL Service Strategy)
    The increase or decrease in the cost of producing one more, or one less, unit of output - for example, the cost of supporting an additional user.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > marginal cost

  • 19 input - output model

    1. межотраслевой баланс

     

    межотраслевой баланс
    МОБ

    Каркасная модель экономики, таблица, в которой показываются многообразные натуральные и стоимостные связи в народном хозяйстве. Анализ МОБ дает комплексную характеристику процесса формирования и использования совокупного общественного продукта в отраслевом разрезе. Покажем это на простейшем примере стоимостного баланса. В основу его схемы положено разделение совокупного продукта на две части, играющие различную роль в процессе общественного воспроизводства, — промежуточный и конечный продукт (см. табл. 1). Выделенная часть таблицы МОБ составляет его первый раздел (первый квадрант МОБ). Это — шахматная таблица межотраслевых материальных связей. Она характеризует текущее производственное потребление. В строках и столбцах в одинаковом порядке перечислены одни и те же отрасли материального производства от 1-й до n-й; показатели, помещенные на пересечениях строк и столбцов, представляют собой величины межотраслевых потоков продукции и в общей форме обозначаются xij, где i и j соответственно номера отраслей производителей и потребителей. Например, число x32 на пересечении третьей строки и второго столбца говорит о том, что отрасль, обозначенная номером 3, произвела (или должна произвести, если баланс — плановый) для отрасли номер 2 продукцию стоимостью x32. Если обозначить количество продукции одной отрасли, необходимой для производства единицы продукции другой отрасли, через aij, а через xj — объем продукции отрасли-потребителя, то межотраслевой поток отраслей i и j составит aijxj. Показатели aij называются коэффициентами прямых затрат. Во втором разделе баланса (в таблице справа от первого) показывается структура конечного продукта, в третьем (он расположен под первым) — формирование его стоимости как суммы чистой продукции и амортизации. Конечный продукт отрасли i принято обозначать yi. В четвертом разделе показываются элементы перераспределения и конечного использования национального дохода. Одна из важнейших предпосылок модели МОБ — линейность связей — состоит в том, что выпуск продукции предпола гается пропорциональным прямым затратам предметов труда и ТАБЛИЦА живого труда, т.е. если прямые затраты увеличить вдвое, то и выпуск (валовой продукции) вырастет тоже вдвое, а если в выпуске данного продукта участвует несколько отраслей, то этот выпуск оказывается линейной (пропорциональной) функцией всех прямых затрат. Линейность связей, разумеется, упрощение реальной экономической действительности. На самом деле связи сложнее. Однако линейность принимается условно, ради упрощения процесса расчетов по межотраслевому балансу, поскольку при этом модель можно представить как систему линейных уравнений, методы решения которой хорошо известны в математике. Ведутся также поиски путей большего приближения МОБ к действительности путем отказа, в той или иной форме, от предпосылки линейности. В принципе возможны два метода оценки продукции в МОБ: по ценам производителей (учитывающим затраты на производство) и по ценам конечного потребления (учитывающим также затраты, связанные с реализацией продукции). На практике в основном применяется второй из этих методов. Стоимостный МОБ строится в разрезе «чистых» отраслей (см. Чистые и хозяйственные отрасли в межотраслевом балансе, Агрегирование) в сопоставимых средних ценах реализации продукции. Для расчета стоимостного баланса, построенного по указанной схеме, применяется экономико-математическая модель, которая представляет собой систему линейных уравнений: В матричной записи она выглядит еще компактнее: AX + Y = X где X — вектор-столбец объемов производства; Y — то же конечного продукта; A = [aij] — матрица коэффициентов прямых затрат. Эту систему принято называть уравнением Леонтьева. Решение системы относительно X позволяет выявить объем продукции каждой отрасли, необходимой для получения запланированного количества конечной продукции (Y), или, наоборот, определить конечный продукт по данным о валовом продукте. Как видим, принимается ли в уравнении за неизвестное X или Y, зависит от постановки задачи. Процесс ее решения связан с расчетом коэффициентов полных затрат (bij) продукции i-й отрасли на единицу продукции j-й отрасли (о методах их расчета см. Коэффициенты полных материальных затрат). Включив их в указанное выше уравнение, преобразуем его в следующее: или в матричной форме: X=BY. Таким образом, получим решение относительно X. Если известны коэффициенты bij, можно делать расчеты различных вариантов планового или прогнозного баланса, исходя из заданного количества конечного продукта общественного производства. Выбор из ряда вариантов МОБ на плановый (прогнозный) период одного «лучшего» в принципе позволил бы оптимизировать план (прогноз), однако методы оптимизации МОБ недостаточно разработаны. В планировании бывш. СССР применялся не только подобный статический стоимостный баланс, но и динамические балансы, натуральные балансы, натурально-стоимостные балансы и другие виды МОБ. Создание метода МОБ было крупным этапом в развитии экономико-математических исследований не только в СССР, но и во всем мире. Первый в истории отчетный баланс народного хозяйства СССР, построенный в виде шахматной таблицы межотраслевых связей, был рассчитан за 1923/24 хозяйственный год. Но тогда вычислительные возможности и состояние математической науки не позволили развить этот метод настолько, чтобы можно было включить его в практику народнохозяйственного планирования. Главным же препятствием явился произвол Сталина, не понявшего значения работ отечественных экономистов и прекратившего их. Многие наиболее талантливые ученые были подвергнуты репрессиям, уничтожены физически. За рубежом же новое направление успешно развивалось. Большой вклад в экономико-математическую разработку метода «затраты-выпуск» (термин, который применяется на Западе для обозначения того же понятия) внес В В.Леонтьев, американский экономист, лауреат Нобелевской премии по экономике. В СССР работы в этом направлении возобновились в середине 60-х годов под руководством акад. В.С.Немчинова. Проводились экспериментальные расчеты в экономических районах, был создан ряд модификаций МОБ страны, в том числе балансов материальных, стоимостных, балансов труда. Материалы отчетных балансов публиковались в статистических сборниках. За разработку и внедрение МОБ в практику группа советских экономистов в 1968 г. была удостоена Государственной премии СССР. В ее составе — акад. А.Н.Ефимов (руководитель работы), Э.Ф.Баранов, Л.Я.Берри, Э.Б.Ершов, Ф.Н.Клоцвог, В.В.Коссов, Л.Е.Минц, С.С.Шаталин, М.Р.Эйдельман. Переход к рыночной экономике и связанная с ним перестройка практики народнохозяйственного планирования ни в коем случае не умаляет значения МОБ как мощного инструмента анализа, прогнозирования, а также планирования (в частности, индикативного) социального и экономического развития страны. См. также: Агрегирование, Балансовая модель, Главная диагональ таблицы межотраслевого баланса, «Затраты-выпуск», Значащий элемент матрицы МОБ, Квадрант межотраслевого баланса, Конечное потребление, Конечный продукт (народнохозяйственный), Конечный продукт отрасли, Косвенные затраты, Коэффициенты комплексных затрат, Коэффициенты полных материальных затрат, Коэффициенты прямых затрат, Коэффициенты распределения, Матричный мультипликатор, Межотраслевые потоки, Межпродуктовый баланс; Натурально-стоимостной баланс, Натуральный межотраслевой баланс, Нулевые элементы матрицы МОБ, Отчетный межотраслевой баланс, Плановые коэффициенты прямых затрат, Плановый межотраслевой баланс, Продуктивность матрицы, Промежуточный продукт, Размерность межотраслевого баланса, Районный межотраслевой баланс, Сопряженнные отрасли, Стоимостная матрица, Стоимостной межотраслевой баланс, Столбец межотраслевого баланса, Строка межотраслевого баланса, Технологическая матрица, Треугольная матрица МОБ, Чистые и хозяйственные отрасли в межотраслевом балансе, Шахматная таблица, Элемент таблицы МОБ.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > input - output model

  • 20 I. O.

    1. межотраслевой баланс

     

    межотраслевой баланс
    МОБ

    Каркасная модель экономики, таблица, в которой показываются многообразные натуральные и стоимостные связи в народном хозяйстве. Анализ МОБ дает комплексную характеристику процесса формирования и использования совокупного общественного продукта в отраслевом разрезе. Покажем это на простейшем примере стоимостного баланса. В основу его схемы положено разделение совокупного продукта на две части, играющие различную роль в процессе общественного воспроизводства, — промежуточный и конечный продукт (см. табл. 1). Выделенная часть таблицы МОБ составляет его первый раздел (первый квадрант МОБ). Это — шахматная таблица межотраслевых материальных связей. Она характеризует текущее производственное потребление. В строках и столбцах в одинаковом порядке перечислены одни и те же отрасли материального производства от 1-й до n-й; показатели, помещенные на пересечениях строк и столбцов, представляют собой величины межотраслевых потоков продукции и в общей форме обозначаются xij, где i и j соответственно номера отраслей производителей и потребителей. Например, число x32 на пересечении третьей строки и второго столбца говорит о том, что отрасль, обозначенная номером 3, произвела (или должна произвести, если баланс — плановый) для отрасли номер 2 продукцию стоимостью x32. Если обозначить количество продукции одной отрасли, необходимой для производства единицы продукции другой отрасли, через aij, а через xj — объем продукции отрасли-потребителя, то межотраслевой поток отраслей i и j составит aijxj. Показатели aij называются коэффициентами прямых затрат. Во втором разделе баланса (в таблице справа от первого) показывается структура конечного продукта, в третьем (он расположен под первым) — формирование его стоимости как суммы чистой продукции и амортизации. Конечный продукт отрасли i принято обозначать yi. В четвертом разделе показываются элементы перераспределения и конечного использования национального дохода. Одна из важнейших предпосылок модели МОБ — линейность связей — состоит в том, что выпуск продукции предпола гается пропорциональным прямым затратам предметов труда и ТАБЛИЦА живого труда, т.е. если прямые затраты увеличить вдвое, то и выпуск (валовой продукции) вырастет тоже вдвое, а если в выпуске данного продукта участвует несколько отраслей, то этот выпуск оказывается линейной (пропорциональной) функцией всех прямых затрат. Линейность связей, разумеется, упрощение реальной экономической действительности. На самом деле связи сложнее. Однако линейность принимается условно, ради упрощения процесса расчетов по межотраслевому балансу, поскольку при этом модель можно представить как систему линейных уравнений, методы решения которой хорошо известны в математике. Ведутся также поиски путей большего приближения МОБ к действительности путем отказа, в той или иной форме, от предпосылки линейности. В принципе возможны два метода оценки продукции в МОБ: по ценам производителей (учитывающим затраты на производство) и по ценам конечного потребления (учитывающим также затраты, связанные с реализацией продукции). На практике в основном применяется второй из этих методов. Стоимостный МОБ строится в разрезе «чистых» отраслей (см. Чистые и хозяйственные отрасли в межотраслевом балансе, Агрегирование) в сопоставимых средних ценах реализации продукции. Для расчета стоимостного баланса, построенного по указанной схеме, применяется экономико-математическая модель, которая представляет собой систему линейных уравнений: В матричной записи она выглядит еще компактнее: AX + Y = X где X — вектор-столбец объемов производства; Y — то же конечного продукта; A = [aij] — матрица коэффициентов прямых затрат. Эту систему принято называть уравнением Леонтьева. Решение системы относительно X позволяет выявить объем продукции каждой отрасли, необходимой для получения запланированного количества конечной продукции (Y), или, наоборот, определить конечный продукт по данным о валовом продукте. Как видим, принимается ли в уравнении за неизвестное X или Y, зависит от постановки задачи. Процесс ее решения связан с расчетом коэффициентов полных затрат (bij) продукции i-й отрасли на единицу продукции j-й отрасли (о методах их расчета см. Коэффициенты полных материальных затрат). Включив их в указанное выше уравнение, преобразуем его в следующее: или в матричной форме: X=BY. Таким образом, получим решение относительно X. Если известны коэффициенты bij, можно делать расчеты различных вариантов планового или прогнозного баланса, исходя из заданного количества конечного продукта общественного производства. Выбор из ряда вариантов МОБ на плановый (прогнозный) период одного «лучшего» в принципе позволил бы оптимизировать план (прогноз), однако методы оптимизации МОБ недостаточно разработаны. В планировании бывш. СССР применялся не только подобный статический стоимостный баланс, но и динамические балансы, натуральные балансы, натурально-стоимостные балансы и другие виды МОБ. Создание метода МОБ было крупным этапом в развитии экономико-математических исследований не только в СССР, но и во всем мире. Первый в истории отчетный баланс народного хозяйства СССР, построенный в виде шахматной таблицы межотраслевых связей, был рассчитан за 1923/24 хозяйственный год. Но тогда вычислительные возможности и состояние математической науки не позволили развить этот метод настолько, чтобы можно было включить его в практику народнохозяйственного планирования. Главным же препятствием явился произвол Сталина, не понявшего значения работ отечественных экономистов и прекратившего их. Многие наиболее талантливые ученые были подвергнуты репрессиям, уничтожены физически. За рубежом же новое направление успешно развивалось. Большой вклад в экономико-математическую разработку метода «затраты-выпуск» (термин, который применяется на Западе для обозначения того же понятия) внес В В.Леонтьев, американский экономист, лауреат Нобелевской премии по экономике. В СССР работы в этом направлении возобновились в середине 60-х годов под руководством акад. В.С.Немчинова. Проводились экспериментальные расчеты в экономических районах, был создан ряд модификаций МОБ страны, в том числе балансов материальных, стоимостных, балансов труда. Материалы отчетных балансов публиковались в статистических сборниках. За разработку и внедрение МОБ в практику группа советских экономистов в 1968 г. была удостоена Государственной премии СССР. В ее составе — акад. А.Н.Ефимов (руководитель работы), Э.Ф.Баранов, Л.Я.Берри, Э.Б.Ершов, Ф.Н.Клоцвог, В.В.Коссов, Л.Е.Минц, С.С.Шаталин, М.Р.Эйдельман. Переход к рыночной экономике и связанная с ним перестройка практики народнохозяйственного планирования ни в коем случае не умаляет значения МОБ как мощного инструмента анализа, прогнозирования, а также планирования (в частности, индикативного) социального и экономического развития страны. См. также: Агрегирование, Балансовая модель, Главная диагональ таблицы межотраслевого баланса, «Затраты-выпуск», Значащий элемент матрицы МОБ, Квадрант межотраслевого баланса, Конечное потребление, Конечный продукт (народнохозяйственный), Конечный продукт отрасли, Косвенные затраты, Коэффициенты комплексных затрат, Коэффициенты полных материальных затрат, Коэффициенты прямых затрат, Коэффициенты распределения, Матричный мультипликатор, Межотраслевые потоки, Межпродуктовый баланс; Натурально-стоимостной баланс, Натуральный межотраслевой баланс, Нулевые элементы матрицы МОБ, Отчетный межотраслевой баланс, Плановые коэффициенты прямых затрат, Плановый межотраслевой баланс, Продуктивность матрицы, Промежуточный продукт, Размерность межотраслевого баланса, Районный межотраслевой баланс, Сопряженнные отрасли, Стоимостная матрица, Стоимостной межотраслевой баланс, Столбец межотраслевого баланса, Строка межотраслевого баланса, Технологическая матрица, Треугольная матрица МОБ, Чистые и хозяйственные отрасли в межотраслевом балансе, Шахматная таблица, Элемент таблицы МОБ.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > I. O.

См. также в других словарях:

  • ЗАДАЧИ ОТКРЫТОГО ТИПА — тип задач, предусматривающих свободные ответы испытуемого, по существу задания без предлагаемых вариантов ответов. Испытуемый должен выполнять задание по своему усмотрению. Регламентируются лишь наиболее общие аспекты формы ответа (вербальная или …   Современный образовательный процесс: основные понятия и термины

  • ТЕРМОДИНАМИКИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — задачи, связанные с исследованием наиболее общих свойств макроскопич. систем, находящихся в состоянии термодинамич. равновесия, и процессов перехода между этими состояниями. Математич. аппарат макроскопич. термодинамики исходит из т. н. начал… …   Математическая энциклопедия

  • Распределительные задачи — [allocation problems] класс экономико математических задач, связанных с распределением ресурсов по работам, которые необходимо выполнить. Если ресурсов достаточно, чтобы каждую работу выполнить наиболее эффективно, задача не возникает. В обратном …   Экономико-математический словарь

  • распределительные задачи — Класс экономико математических задач, связанных с распределением ресурсов по работам, которые необходимо выполнить. Если ресурсов достаточно, чтобы каждую работу выполнить наиболее эффективно, задача не возникает. В обратном же случае переброска …   Справочник технического переводчика

  • СИНТЕЗА ЗАДАЧИ — совокупность задач, концентрирующихся вокруг проблемы построения управляющей системы (у. с.), имеющей предписанное функционирование. У. с. строится из элементов, к рые обычно сами являются простыми у. с. При синтезе заранее заданы состав… …   Математическая энциклопедия

  • Отраслевые задачи оптимального планирования и размещения производства — [sectoral planning problems] экономико математические задачи расчета оптимальных направлений развития отраслей (в ряде случаев подотраслей и производств). Наибольшее развитие получили в условиях т.н. отраслевой системы управления в бывш. СССР в… …   Экономико-математический словарь

  • отраслевые задачи оптимального планирования и размещения производства — Экономико математические задачи расчета оптимальных направлений развития отраслей (в ряде случаев подотраслей и производств). Наибольшее развитие получили в условиях т.н. отраслевой системы управления в бывш. СССР в 70 х 80 х гг. При этом, как… …   Справочник технического переводчика

  • Задача трехмерной упаковки в объем — В теории сложности вычислений задача об упаковке в контейнеры NP трудная комбинаторная задача. Задача заключается в упаковке объектов предопределённой формы в конечное число контейнеров предопределённой формы таким способом, чтобы число… …   Википедия

  • синтаксис —    (греч. «соединение»). Отдел грамматики, содержащий учение о формах словосочетаний (см). Т. к. словосочетания образуются, между прочим, при помощи форм отдельных слов, входящих в словосочетание, то С. тесно связан с тем отделом морфологии, т. е …   Грамматический словарь: Грамматические и лингвистические термины

  • Национальный банк Казахстана — (National Bank of Kazakhstan) Сведения о национальном банке республики Казахстан, функции и задачи Национальноо банка Сведения о национальном банке республики Казахстан, функции и задачи Национальноо банка, история создания банка Содержание… …   Энциклопедия инвестора

  • Европейский центральный банк — (European Central Bank) Европейский центральный банк – это крупнейшее международное кредитно банковкое учреждение государств Евросоюза и Зоны Евро Структура и фкункции Европейского Центрального банка, Европейская система центральных банков,… …   Энциклопедия инвестора

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»